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Abstract

This work investigates teleportation error in frequency dependent Hybrid Implicit
Monte Carlo Diffusion (HIMCD). HIMCD dynamically applies Implicit Monte Carlo
Diffusion (IMD) [1, 2] to regions of a problem that are opaque and diffusive while
applying standard Implicit Monte Carlo (IMC) [3] to regions where the diffusion ap-
proximation is invalid. Teleportation error arises in Monte Carlo simulations when a
source is represented with the wrong spatial distribution causing radiation energy to
propagate unphysically fast through a material [4]. Both frequency dependent HIMCD
and Hybrid IMC/DDMC [5] suffer from a new source of teleportation error that is intrin-
sic to these methods. This teleportation error arises from sampling a new spatial location
of a Monte Carlo particle when it scatters from a diffusive opaque group to a moderately
opaque transport group. In this work we show that by sampling these “up-scatter”
locations with a flat spatial distribution in the cell, as was done in previous work [5, 6],
creates significant teleportation error in optically thick cells. We then show that source
tilting can improve these results for moderately opaque cells, but is not accurate enough
to significantly improve the teleportation error in extremely opaque cells. Finally we
present a new set of criteria that can be used to define which opacity groups are diffusive,
in conjunction with source tilting, to significantly reduce teleportation regardless of the
cell’s opacity. We refer to this new set of diffusion criteria as “over-lumping” because
it includes moderately opaque frequency groups, which were previously excluded by
other criteria [5], into the diffusion domain. The over-lumping criteria is tested using
two test cases: a Marshak wave moving through stationary optically thick iron, and a
frequency-dependent radiation hydrodynamic ablation test case.

1. Introduction

Many radiation hydrodynamic problems, such as those found in astrophysics, are
composed of strongly heterogeneous materials that can vary in optical thicknesses by
many orders of magnitude. Hybrid Implicit Monte Carlo Diffusion (HIMCD) [7] and
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Hybrid Discrete Diffusion Monte Carlo (DDMC) [6] can accurately resolve the radia-
tion hydrodynamics equations more efficiently than the standard Implicit Monte Carlo
(IMC) [3] approach typically used on these types of problems.

HIMCD couples IMC to Implicit Monte Carlo Diffusion (IMD) [1]. IMD evaluates a
spatially discretized diffusion equation using a Monte Carlo technique. DDMC [5] differs
primarily in the way that the photons are tracked in time. IMD tracks photon discretely
in time based on the temporal discretization, and DDMC tracks photon continuously in
time [2]. This work focuses on IMD but the reader should note that much of what is
discussed is similarly applicable to DDMC. Similarly, many of the tools developed to
implement this work were originally developed for DDMC and will be referenced as
such.

It has been well documented that Implicit Monte Carlo methods can produce signif-
icant errors in simulations with optically thick material or small time steps[4, 8]. The
error that arises in these simulations has been termed teleportation error. The term
“teleportation error” was originally coined by McKinley et al. [4] to describe the un-
physical propagation (or “teleportation”) of energy in a simulation. This teleportation
of energy happens when using a poor representation of the shape of the emission source
in a zone with a sharp temperature gradient. Figure 1 shows an example of different
source shapes for a exponential temperature distribution. If Monte Carlo (MC) particle
locations are determined using the piece wise constant temperature distribution, such
as the red line in the first zone of Figure 1, an unphysical amount of energy can be
placed near the colder zone. This teleportation error is unique to Monte Carlo methods
because MC particles are tracked continuously in space, unlike deterministic methods
that are discrete in space. Using asymptotic analysis Densmore [8] confirmed, what
was shown numerically by McKinley et al., that teleportation error from the piecewise
constant representation of the emission source can be significant for small time steps in
optically thick material.

aT4(x)

x

Figure 1: This figure shows a piecewise constant (depicted by the red lines) versus a linear continuous
emission distribution (blue lines). For this example the exact emission profile was chosen as exponential.
Using a piecewise constant representation of the temperature profile to sample emission locations places an
unphysical amount of photon energy near the cold zone “teleporting” (or nonphysically propagating) energy
forward in the simulation. This picture illustrates how the error in the piecewise constant is worse at strong
gradients in the material temperature.

Densmore [8] showed that using a piecewise linear emission source distribution
significantly reduces teleportation error in the IMC method. This treatment of the
emissions source is commonly referred to as “source tilting” and is currently used in the
IMC package of the Kull [9] multiphysics software suite.

In this work we show that frequency dependent HIMCD and DDMC create a previ-
ously neglected form of teleportation error. This error arises from the treatment of the
IMD-to-IMC scattering source. Densmore actually used a simplified linear equation and
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varied the shape of the scattering source to demonstrate the presence of teleportation
error in the emission source representation of IMC. This is exactly how the error arises
in the HIMCD and Hybrid DDMC method, however to the authors knowledge there
has not been mention of this error, or how to mitigate it, in any of the previous work
on these methods. Finally in this work we will show ways to mitigate this error using
source tilting and a new approach that we refer to as “over-lumping”.

2. Frequency-dependent HIMCD

This work will detail the development of the frequency dependent Hybrid Implicit
Monte Carlo Diffusion equations. This will include a general description of how the
HIMCD equations are formed, with a detailed description of the frequency dependent
interface conditions that have not previously been discussed at length. Much of this
work will build from the large literature base of the IMD and DDMC methods. This
includes the previous work on frequency dependent IMD [2], frequency dependent
Hybrid DDMC [5], and more recent work with regards to HIMCD and Hybrid DDMC
with regards to the radiation hydrodynamics equations [7, 6].

Frequency dependent HIMCD defines the radiation field over two discrete domains:
a diffusion domain and a transport domain. Initially consider an arbitrary function
of space, time, and frequency that we will call the diffusion criterion, that defines the
diffusion domain.

γ(r, t, ν) =

{
1 if Diffusion
0 if Transport

The diffusion criterion can be defined in different ways, and we will show later how
these different ways can effect the accuracy and efficiency of the method. In HIMCD,
IMD is used to evaluate the diffusion equation in the zones that make up the diffusion
domain. We present the diffusion equation here in its multigroup form:

∂Eg

∂t
+ c∇̄ ·

1
3κg
∇̄Eg − cκg f Eg − cκgEg(1 − f ) =

∫ g+1

g b(νg, t)κgγgdν

κp
κp f acT4

+

∫ g+1

g b(ν, t)κgγgdν

κp

N∑
g=0

κgEgγg(1 − f )dν′

+

∫ g+1

g b(ν, t)κgγgdν

κp

N∑
g=0

∫ 4π

0
κgIg(1 − γg)(1 − f )∂Ω̄ (1)

where the subscript g expresses a value that has been integrated over a single group’s

frequency range (νg ≤ ν ≤ νg+1), Eg =
∫ g+1

g Eνdν is the group energy density, κg is the

group opacity, κp =
∫
∞

0 b(ν,T)κνdν is the Planck opacity, b(ν,T) is the normalized Planck
distribution, f is the fleck factor, a is the radiation constant, and c is the speed of light. At
this point the only unique part of the HIMCD diffusion equation is the presence of the
diffusion criterion that determines how much of each source is attributed to the diffusion
groups. Eq. 1 also has an effective scattering source that accounts for photons scattered
from the transport frequency (γg = 0) in a zone to the diffusion frequencies (γg = 1).
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IMC is used to evaluate the transport equation in the remainder of the domain.

1
c
∂Ig

∂t
+ Ω̄ · ∇̄Ig + κgIg =

1
4π

∫ g+1

g b(ν,T)κg(1 − γg)dν

κp
κp f acT4

+
1

4π

∫ g+1

g b(ν,T)κg(1 − γg)dν

κp

N∑
g=0

∫ 4π

0
κgIg(1 − γg)(1 − f )dΩ̄′

+
1

4π

∫ g+1

g b(ν,T)κg(1 − γg)dν

κp

N∑
g=0

κgEgγg(1 − f ). (2)

The material energy balance is used to account for radiation exchange with the material:

ρ
∂ε
∂t

=


∫
∞

0

∫ 4π

0
κν f IνdΩdν + c

N∑
g=0

κg f Eg

 − κp f acT4. (3)

Eq. 1, 2, and 3 make up the fundamental multigroup HIMCD equations. These
equations can be used directly in this form using the spatial and temporal discretization
described by Cleveland et al. [2]. However, in their current form effective scattering
between diffusion groups can still make highly scattering simulations very expensive to
evaluate [5]. Densmore et al. showed that using the frequency integrated (or “lumped”)
diffusion equation can eliminate the process of scattering between diffusion groups.
This can significantly improve the performance of Hybrid DDMC or HIMCD. This was
originally shown for monotonic decreasing opacities [5], and was recently pointed out to
be extensible to arbitrary opacity functions [6]. Our work uses this frequency integration
scheme, and we show how it is applied to arbitrary opacity distributions for HIMCD.
Note that this approach is functionally equivalent to Densmore’s original approach to
frequency integrated Hybrid DDMC [5] for monotonic opacity functions.

2.1. Frequency-integrated HIMCD
Our implementation of frequency integrated HIMCD maintains a fixed frequency

group stencil for all materials regardless of where diffusion groups are located. Figure 2
shows an example of what the frequency group stencil can look like as a function of
frequency space. Using this approach all diffusion groups share a group averaged
opacity value while maintaining the individual diffusion structure. For example, in
Figure 2 the blue colored groups in zone i − 1 all share the same opacity values but
maintain their own frequency space as indicated by the dotted lines. This provides an
estimate of the frequency distribution of the radiation energy density and allows us to
use the powerful Monte Carlo integration scheme to evaluate the arbitrary transport-
diffusion frequency group interface conditions at zone faces. The down side to this
approach is that it has an increased memory cost as compared to using a single frequency
group to represent the diffusion domain and it could be potentially more expensive
because the need to select a new frequency group every time an interaction event is
sampled.
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Figure 2: This figure shows an example of a frequency domain stencil for three adjoining zones. Each shaded
section represents a frequency group, and it is color coincides with either the diffusion (blue) or transport (red)
domain, which is determined from its group diffusion criterion for that zone γg = γ(r, t, νg). The dotted lines in
the blue regions help show that all diffusion groups in each zone are treated as a frequency integrated quantity.
Furthermore we see that the frequency integrated diffusion domain can be discontinuous in frequency space
(for example the frequency stencil of zone i + 1)

We begin by assuming that the frequency distribution of the energy density is Planck-
ian [5] for all diffusion groups:

En+1
g ≈ Ẽn+1

∫ g+1

g b(ν,Tn)κgγgdν∑N
g′=0

∫ g′+1

g′ b(ν,Tn)κg′γg′dν
≡ Ẽn+1ξg (4)

where ξg is the diffusion group emission distribution and Ẽ =
∫
∞

0 Eνγνdν is the frequency
integrated diffusion energy density. Note that this frequency integrated quantity only
includes the photon energy associated with diffusion groups (as determined by the
frequency dependent diffusion criterion γν). The opacity values are similarly weighted
with a Planckian distribution:

κg = κ̃p =

∑N
g′=0 γg′κg′

∫ g′+1

g′ b(ν,T)dν∑N
g′=0 γg′

∫ g′+1

g′ b(ν,Tn)dν
. (5)

It is necessary to define a weighted distribution for the reciprocal group opacity that will
be used later to construct the diffusion opacity:

(κg)−1 = (κ̃r)−1 =


∑N

g′=0 γg′ (κg′ )−1
∫ g′+1

g′
db
dT (ν,T)dν∑N

g′=0 γg′
∫ g′+1

g′
db
dT (ν,Tn)dν

 . (6)

This weighted reciprocal value is akin to a partial Rosseland mean opacity, as opposed to
the Planck weighted reciprocal mean used by Densmore [5], because it is weighted using
the derivative of the normalized Planck function db

dT (ν,T). We use the derivative Planck
function for the reciprocal mean, as opposed to the normal Planck function, because it
is known to produce more accurate results for frequency integrated diffusion.

Given the assumed function for the diffusion group energy density (Eq. 4) and the
weighted diffusion group opacity (Eq. 5), it is possible to analytically account for the
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effective scattering within diffusion groups (the 6th term in Eq 1):∫ g+1

g b(ν, t)κgγgdν

κp

N∑
g=0

κgEgγg(1 − f )dν′

=

∑
′N
g

∫ g′+1

g′ b(ν,Tn)κg′γg′dν

κp
κ̃pẼn+1

∫ g+1

g b(ν,Tn)κgγgdν∑N
g′=0

∫ g′+1

g′ b(ν,Tn)κg′γg′dν
(1 − f )

=

∑
′N
g

∫ g′+1

g′ b(ν,Tn)κg′γg′dν

κp
κ̃pEg(1 − f )

≡ ακ̃pEg(1 − f ) (7)

where α is the ratio of the radiation energy emitted into the diffusion groups. The
multigroup diffusion equation (Eq. 1) can now be re-written given Eqs. 5, 6, and 7:

∂Eg

∂t
+ c∇̄ ·

1
3κ̃r
∇̄Eg − cκ̃p f Eg − cκ̃pEg(1 − f )(1 − α) = ξgακp f acT4

+ ξgα
N∑

g=0

∫ 4π

0
κgIg(1 − γg)(1 − f )∂Ω̄. (8)

Note that the effective scattering between diffusion groups has now been eliminated.
This significantly improves the performance of the frequency dependent HIMCD method.

The multigroup HIMCD method with frequency integrated diffusion opacities is
now formed by Eqs. 8, 2, and 3. Now it is necessary to chose a spatial and temporal
discretization for the diffusion equation.

2.2. The discretized diffusion equation
IMD evaluates the diffusion equations by forming interaction probabilities from the

spatial and temporal discretized diffusion equation. This work applies a finite vol-
ume central differencing spatial discretization and a backward Euler time descretization
to Eq. 8. This is the same spatial and temporal scheme applied to the frequency-
independent IMD equations by Cleveland et al. [7].The discretized diffusion equation
for a diffusion group g can be written for a single zone i with M diffusion-transport faces
and J diffusion-diffusion faces:

En+1
g,i ∆Vi − c

J∑
j

n̄ j ·Dg, j∇En+1
g, j δtδA j − c

M∑
m

∫
A

∫ tn+1

tn
n̄m · Fg,mdtdAm + cκ̃p f En+1

g,i

+ cκ̃pEn+1
g,i (1 − f )(1 − α) = ξgακp f acTn4∆t∆V

+ En
g,i∆Vi + ξgα

∫
∞

0

∫ 4π

0
κν(1 − f )Iν∂Ω̄′ (9)

where n̄ is the unit normal of a zone face, Dg is the face based diffusion coefficient,
and A is the face area. Coefficients associated with the transport-diffusion interface
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faces (denoted by m subscript) are developed later in the diffusion-transport spatial
interface condition and are therefore left in the integral form. The face averaged diffusion
coefficient for a second order finite volume discretization applied to orthogonal meshes
can be expressed as [10]:

Dg, j =
D j+ D j− (X j+ 1

2
− X j− 1

2
)

D j+ (X j − X j− 1
2
) + D j− (X j+ 1

2
− X j)

(10)

where X is a position in space. The subscripts ( j + 1
2 ) and ( j − 1

2 ) denote zone-centered
values and the subscripts ( j+) and ( j−) denote the material property immediately on
either side of face j.

The selection of the diffusion coefficients on either side of the face (D j+ and D j− )
for this discretization scheme is important, because very thick zones can nonphysically
stop photon propagation when adjoined by relatively thin zones [10]. In this work we
evaluate the diffusion coefficient value at every face of every zone using the temperature
at that face (T j).

Dg, j± =
1

3κ̃r(X j± 1
2
,T j)

(11)

The HIMCD algorithm allows MC particles to explicitly transition between the dif-
fusion and transport domain given the interface conditions that connect the domains.

2.3. Diffusion-transport interface conditions
Monte Carlo particles can easily be tracked by either the IMC or IMD tracking

procedures and only require additional information sampling (location, direction, and
time) when they transition from IMD to IMC. The IMD algorithm simply disregards the
extra information when MC particles are transitioned from IMC to IMD.

The transitions between IMC and IMD particles are based on the temporal, spatial,
and frequency interface conditions that couple the diffusion and transport domains
together. The frequency dependent temporal and spatial interface conditions listed
here are very similar to the frequency-independent interface conditions that have pre-
viously been developed for HIMCD [7]. These diffusion-transport interface conditions
are expressed in terms of the frequency dependent diffusion criterion used to define the
diffusion and transport domains.

2.3.1. Diffusion-transport temporal interface conditions
The diffusion temporal interface condition for the diffusion domain is defined as:

if γn−1
g = 0

and γn
g = 1

}
En

g = 1
c

∫ 4π

0 In
gdΩ̄

and similarly for the transport domain:

if γn−1
g = 1

and γn
g = 0

}
In

g = 1
∆V

1
4πcEn

g∆V.

These interface conditions allow the diffusion domain stencil to change as a function
of time and account for how the energy is redistributed in a new domain. Here we
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intentionally kept fractions that could be canceled out to show that, when energy in the
diffusion domain is moved to the transport domain in a subsequent time step (γn−1

g = 1
andγn

g = 0), we are required to redistribute the energy density in angle ((4π)−1) and space
((∆V)−1). The assumption that the previous energy density En

g is equally distributed in
space and angle should be accurate because we do not use diffusion in a zone unless it
is opaque enough for the radiation to be isotropic.

2.3.2. The diffusion–transport spatial interface condition
We employ the diffusion transport interface condition originally developed by Dens-

more et al. [11] for an interface between IMC and DDMC. This interface interface condi-
tion is defined such that it will preserve an accurate emissivity at the interface regardless
of zone size [11]. The emissivity is defined as the fraction of incident radiation that is
not reflected back through the incident surface [12]. The original derivation was for
frequency-independent radiation calculations and we present it here for the frequency
integrated form of the interface condition.

The interface condition for a transport zone that adjoins the interface face m can be
broken down into two parts: one accounts for the photon intensity that is entering the
zone (where the cosine angle between the photon and the interface normal is µm < 0) and
the other accounts for the photon intensity that leaves the zone (µm > 0). The angular
flux (µI|m) entering the transport zone through the diffusion-transport interface face (m)
is defined such that (if µm < 0):

µI|µm<0 =
1

Am

1
∆t

1
2π

µ∫ 0

−1 µmdµ
cEn+1

m+ 1
2
Cm∆tAm

+
1

2π
µ∫ 0

−1 µmdµ

∫ 2π

0

∫ 1

0
Pref,m[µm]µmImdµdθ. (12)

We have intentionally left fractions that can be canceled in these equations to show that it
is necessary to sample the particle direction ((2π)−1 and µ(

∫ 0

−1 µmdµ)−1), location ((Am)−1),
and time ((∆t)−1) when an IMC particle is transitioned to an IMD particle. Notice that it
is not necessary to re-sample the particle’s location or time when they are reflected back
into the transport zone. These reflections are assumed to be instantaneous and occur
where and when the IMC particle originally crossed the interface face m. The angular
flux that leaves the transport zone through the interface face m is defined as (if µm > 0):

µI|µm>0 = (1 − Pref,m[µm])µmIm (13)

The reflection probability has a constraint on both the scattering ratio (ω) and zone
optical thickness (τ) to ensure 1 ≤ Pref,m[µ] ≤ 0. These constraints are wrapped into the
definition of the diffusion criterion. We have defined two new variables: the diffusion
interface leakage coefficient Cm:

Cm =
P′m
4

(14)

and the incident cosine angle-dependent reflection probability:

Pref,m[µm] = (1 − P′m)2(1 +
3
2
µm) (15)
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where the associated multiplication factor (2(1+ 3
2µ)) ariserfrom the asymptotic diffusion-

limit interface condition. P′m is defined such that it preserves the analytic emissivity ε′

and is a function of the diffusion interface zone’s material properties and discretized
mesh [11]:

P′m =
ε′βm

βm −
4
3ε
′τm

. (16)

The remaining variables are defined in reference [11] as:

ε′ =
4
3

√
3(1 − ω)

1 + λ
√

3(1 − ω)
(17)

βm =
3
2

(1 − ωm)τ2
m +

√
3(1 − ωm)τ2

m +
9
4

(1 − ωm)2τ4
m (18)

τm = κ̃rn̄m · ∆X (19)

ωm =
κ̃r − κ̃p fm+ 1

2

κ̃r
(20)

where λ = 0.7104 is the extrapolation distance and µ = Ω̄ · n̄ is the cosine of the
angle between the particle direction and the face unit normal n̄ (which points from the
transport zone to the diffusion zone). ∆X = 2(X̄m − X̄m+ 1

2
) is two times the vector from

the position of the zone center X̄m+ 1
2

to the interface face center X̄m. We will refer to ωm

as the scattering ratio. These variables are defined using the frequency averaged opacity
values from the lumped diffusion equation.

The overall interface condition can be written as a composition of the intensity leaving
and entering the transport zone though the interface face m:

if γn
i = 0

and γn
m− 1

2
= 1

}
µI|m =

{
µI|µm<0 if µm < 0
µI|µm>0 if µm > 0

The diffusion interface condition can be constructed by integrating the transport interface
condition over angle:

if γn
i = 1

and γn
m− 1

2
= 0

} ∫
A

∫ tn+1

tn n̄m · F̄mdtdAm.

where∫
A

∫ tn+1

tn
n̄m · F̄mdtdAm =

∫
A

∫ tn+1

tn

∫ 2π

0

(∫ 0

−1
µI|µm<0 +

∫ 1

0
µI|µm>0

)
dµdθdtdAm. (21)

2.3.3. Diffusion-transport scattering interface
The scattering interface between the transport and diffusion domains is defined in

the HIMCD equations through the scattering source. When MC particles scatter from
the transport to the diffusion domain (we refer to this as a down-scatter), it is only
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necessary to sample a new diffusion group from the diffusion emission distribution ξg
(defined by Eq. 4):

Eg = ξgα
N∑

g′=0

∫ tn+1

tn

∫ 4π

0
κg′ Ig′ (1 − γg′ )(1 − f )dΩ̄dt (22)

Scattering from the diffusion to the transport domain (referred to as up-scattering)
requires us to re-sample a new MC particle direction, frequency, time, and zone location.

Ig =
1
∆t

1
∆V

1
4π

∫ g+1

g b(ν,T)κg(1 − γg)dν

κp

N∑
g=0

κgEn+1
g γg(1 − f )∆t∆V (23)

It turns out that the accuracy of the HIMCD method is strongly dependent on how
these up-scattering locations are sampled. This is unique to the HIMCD and Hybrid
DDMC method because it requires that we treat these events using a discrete function
rather than continuously as is done in IMC. Densmore showed the effects of treating
the IMC emission source with different spatial distributions; treating effective scattering
discretely, rather than continuously as is done in IMC, will cause significant teleportation
error. This is exactly what happens in this work, though to the authors knowledge it has
not been previously discussed for these hybrid methods.

In the remainder of this section we will summarize the frequency-dependent HIMCD
algorithm. This includes a detailed description of the additional sampling that occurs
in the frequency-integrated HIMCD scheme as apposed to the frequency-independent
HIMCD method.

2.4. Applying frequency-dependent HIMCD to evaluate the radiation field
The frequency-dependent HIMCD package presented in this work was implemented

in the Kull [9] multiphysics software package, which already contains a well documented
IMC package [9]. The addition of frequency dependence to the HIMCD package only re-
quires a few modifications to the original frequency-independent HIMCD algorithm [7].
At the beginning of the time step the diffusion criterion γn

i,g is evaluated to define the
diffusion domain (γn

i,g = 1). Given the frequency stencil defined by the diffusion crite-
rion it is possible to develop the IMD matrix using the frequency integrated coefficients
presented in this work. Remember that we maintain the frequency stencil and replace
the individual diffusion group opacity values within a zone with a single frequency
integrated value. This forms a standard multigroup diffusion matrix where each diffu-
sion group has the same frequency integrated opacity values but can still have a unique
transport-diffusion interface condition. This allows us to use the MC method to estimate
the frequency-dependence, of both zone and face centered quantities. This also removes
the events which account for scattering from one diffusion group to another. These scat-
tering events can dominate the simulation time and do not provide a significant amount
of additional accuracy. The probabilities are generated using the matrix that forms the
left hand side of the discretized diffusion equation (Eq. 9). Greater detail on how these
probabilities are developed can be found in reference [2]. IMC and IMD particles are
exchanged during Monte Carlo particle tracking according to the previously defined
interface conditions.
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The frequency-integrated HIMCD algorithm requires two additional sampling pro-
cesses not present in frequency-independent HIMCD [7]. The first is that we must
sample a new diffusion frequency at the beginning of every IMD random-walk. This
sampling arises from the Planck emission normalization defined in Eq. 4. This means
that MC particles always have a unique frequency that defines their group. This allows
for a simple straightforward evaluation of the frequency dependence at zone interfaces.

The scattering sources that appear in the frequency-integrated HIMCD equations
are evaluated explicitly during the Monte Carlo process by allowing the MC particles
to scatter between the transport and diffusion domain. Down-scattering from transport
to diffusion is straightforward and requires no additional sampling. Up-scattering can
account for a significant percentage of the overall energy sourced into the transport
domain. This makes the HIMCD method very sensitive to the accuracy of the sampling
used to redistribute the MC energy into the transport domain. We will show how the
source shape used to distribute the up-scattering events in the zone can significantly
affect the accuracy of HIMCD and Hybrid DDMC methods.

3. Reducing teleportation error using source tilting

We begin by defining the frequency dependent diffusion criterion that has been used
in previous work [5, 6, 7].

γg =

{
1 if ωg ≥ 0.9 and τmin

g ≥ 4
0 else

This frequency-dependent diffusion criterion adheres to the minimum constraints
required to produce reflection probabilities that are bounded between 1 and 0 for the
frequency-integrated diffusion transport interface (Eq. 15). The diffusion criterion is de-
fined using each zone’s minimum optical depth (τmin

g ) and scattering ratio (ωg). Though
lower scattering ratio can be used to generate valid interface probability ranges, a 90%
scattering ratio was chosen in this work so that transitions to diffusion occur only when
diffusion is valid [11]. We evaluate this diffusion criterion for every zone at the beginning
of every time step given the current mesh and material properties. The group scattering
ratio is evaluated as:

ωg =
κg − fκg

κg
(24)

The optical depth is defined as:

τmin
g = κgn̄ · ∆Xmin (25)

where the vector ∆Xmin = 2(X̄ f − X̄i) is two times the vector from the zone center X̄i to
the closest zone face X̄ f . This is an approximation of the minimum zone width. This
conservative definition of the diffusion criterion ensures that the frequency-integrated
opacity values:

ω =
κ̃r − κ̃p f
κ̃r

(26)

and
τmin = κ̃rn̄ · ∆Xmin (27)
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form bounded interface probabilities
To show the importance of source tilting we begin with a numerical demonstra-

tion of teleportation error in frequency-dependent HIMCD when up-scatter events are
distributed equally within a zone.

3.1. A numerical demonstration of teleportation error and the effects of source tilting in HIMCD
In this work source tilting mitigates teleportation error that arises from sampling the

spatial locations of the emission source. This type of emission source teleportation error
in the IMC method is dominant in the presence of extremely optically thick zones when
small time steps are taken [8]. To demonstrate the sensitivity of these hybrid methods
to the spatial sampling of the up-scattering events we have chosen a problem that is
dominated by effective scattering. The dominance of the effective scattering and source
titling the emission source prevents teleportation error in the emission source from being
a significant factor in the simulation.

We begin by showing a simple 1D Marshak wave problem which was originally pre-
sented in the work of Densmore et al. [5] to demonstrate the performance of frequency-
integrated hybrid DDMC. This problem consists of a cold (T0 = 1 [eV]) heterogeneous
semi-infinite slab of material with an analytic opacity that is dependent on temperature
and frequency:

κ(ν,T) =
1000kT−0.5

(hν)3 . (28)

This material is heated by a blackbody emission source T = 1 [keV] at x = 0. Figure
3 show the results at a simulation time of t = 1 × 10−9 [sec] using a time step size of
∆t = 1×10−11 [sec] and a zone size of ∆x = 0.02 [cm]. This compares Hybrid DDMC and
HIMCD to the solution evaluated using IMC and SN. The HIMCD and IMC simulations
were run in Kull using 1 × 105 MC particles per time step. The IMC method uses
source tilting for the emission source. The up-scattering events are distributed equally
within a zone as was done in previous work [5, 6]. The SN simulation was run in Kull
using S6 level symmetric quadrature set. The Hybrid DDMC simulation was run in the
Milagro [13] radiative transfer package at LANL.

These results show that the hybrid methods cause the material temperature to prop-
agate (or ”teleport”) faster than the reference results obtained using IMC and SN. This
teleportation error arises from distributing the up-scattering events uniformly within
each zone. This effect went unnoticed in the work for Densmore [5] and Wollaeger [6]
because the very fine spatial mesh sizes masked the effect. Thanks to the moderate
zone opaqueness, large time step sizes, and emission source titling the IMC simulation
avoids the development of any significant teleportation error. This is not the case for
the Hybrid methods because the problem is dominated by effective scattering which is
being represented as a discrete, rather than continuous, event.

Similar to emission source teleportation error that arises in IMC, we would expect
that the up-scatter source teleportation error would be reduced as the spatial mesh is
refined. Figure 4 shows that as the spatial mesh is refined, the HIMCD method that
distributes the up-scattering events uniformly in each zone converges to the reference
SN simulation.
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Figure 3: The material temperature profile evaluated by HIMCD, Hybrid DDMC, IMC, and SN . This shows
that the hybrid methods without source tilting result in a significant amount of overheating in the regions of
strong temperature gradients.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.25  0.3  0.35  0.4  0.45

T
m

 (
ke

V
)

x (cm)

SN
HIMCD Δx=0.005 (Without Tilt)

HIMCD Δx=0.01 (Without Tilt)
HIMCD Δx=0.02 (Without Tilt)

Figure 4: Refining the spatial mesh quickly reduces the teleportation error that arises in the HIMCD method.
This is due in part to two effects: the first is the fact that as the zones are made smaller the assumption that the
up-scattering events are equally distributed in space becomes more accurate, the second is that as the zones
are made smaller fewer groups meet the diffusion criterion and more of the problem is treated directly with
transport using IMC.
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In the following section we will show that representing the spatial distribution of
the up-scattering events with the same source tilting used for the IMC emission source
significantly reduces the up-scattering teleportation error.

3.2. Mitigating up-scattering teleportation error using source tilting
An up-scatter event can be physically interpreted as a photon that is absorbed in a

diffusion domain and then remitted in the transport domain during a single time step.
This quickly leads to the assumption that the real spatial distribution of the up-scattering
source may closely resemble that of the emission source. We therefore, apply the same
source tilting scheme used to improve the spatial representation of the emission source
to the up-scattering source.

The source tilting scheme used in the Kull IMC package relies on a simple linear
interpolation of a weighted emission temperature T4(X), where the emission tempera-
ture is weighted with the Rosseland mean opacity. This weighted temperature field is
evaluated at the zone faces and would be defined as:

T4(X f ) =

T4(X f )
κr(X f )∑N
f

1
κr(X f ′ )

(29)

for face f of a zone with N faces. The resulting sampling for the cumulative probability
density function of the linear interpolation for a 1D zone is:

X = X0 + (X1 − X0)
(
√

T8
0 + rn(T8

1 − T8
0) − T4

0)

T4
1 − T4

0

(30)

where rn is a random number between 0 and 1.
Applying the source tilting scheme defined in Eq. 30 to the up-scattering source

in the frequency-dependent HIMCD method significantly improves the results of the
Marshak wave problem. Figure 5 show the improved results using source tilting to select
the location of the up-scattering events. This is a significant improvement as compared
to the results shown for the same coarse mesh size in Figure 4; however the up-scattering
source tilting slightly under predicts the propagation of the material temperature wave.

3.3. Source tilting is not enough to completely prevent teleportation error
Even though using source titling to sample the up-scatter locations significantly

improved the results of the Marshak wave problem, it is not enough to prevent telepor-
tation error from becoming significant in all simulations. Consider an optically thick
semi-infinite block of iron heated by a black body face source T = 1 [keV] at x = 0.
The slab of iron is given an initial temperature T0 = 0.5 [keV], and density of ρ0 = 7.4
[g/cc]. Figure 6 show the IMC simulation results at three different spatial refinements
of the domain 0 ≤ x ≤ 1 at simulation time t = 1 × 10−8 [sec] using a time step size
of ∆t = 10 × 10−10 [sec]. Figure 6 shows that emission source tilting does not prevent
teleportation error from becoming significant in the 10 zone simulation. We would ex-
pect HIMCD to produce significantly better results for the 10 zone test case, because the
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Figure 5: Source tilting at up-scattering events significantly improves the Hybrid DDMC and HIMCD results
for the Marshak wave benchmark.

emission spectrum should be dominated by diffusion in optically thick material. Fig-
ure 7 shows the results of the HIMCD simulation at the same spatial refinements used
in the IMC simulations. Figures 6 and 7 show that our tilting scheme is not accurate
enough to completely prevent teleportation error from becoming significant. What is
worse is that the Hybrid methods are less accurate in the intermediate refinement range
where there is a significant amount of up-scattering.

We will now go on to show how an improved diffusion criterion can significantly
reduce teleportation error in the Hybrid methods.

4. An improved diffusion criterion to mitigate teleportation error

We assert that the dominant source of up-scattering teleportation error occurs during
up-scattering from the diffusion domain to moderately opaque transport groups (0.01 ≤
τmin

g ≤ 4) that have previously been excluded by the diffusion criterion defined in
Section 3. Previous definitions of the diffusion criterion were based only on frequency
dependent values (τmin

g andωg) even though they rely on frequency integrated quantities.
The previous definition of the diffusion criterion was a conservative way to ensure
that the frequency integrated transport-diffusion spatial interface condition produced
probabilities between 0 and 1. Densmore et al. showed that the minimum zone optical
depth τmin can be determined from [14]:

3
2

(1 − ω)τmin +

√
3(1 − ω) +

9
4

(1 − ω)2τ2
min =

√
3(1 − ω)

1 + (λ − 5
3 )

√
3(1 − ω)

(31)
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Figure 6: The IMC simulation results of the heated iron test case at three different spatial refinements. Even
with source tilting the emission source teleportation error is very significant for the 10 zone simulation.
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The result of this requirement is that the zone optical thickness must be greater than
about 4 mean free paths (τmin ≥ 4) for a scattering ratio of 90% (ω = 0.9). This quickly lim-
its the frequency groups that diffusion theory can be applied to in the HIMCD method.
This limit directly corresponds to the interface condition and does not necessarily cor-
relate to the accuracy of diffusion theory. There are however, some intuitive reasons to
base the diffusion criterion on optical thickness and the scattering ratio other than this
analytic limit. This is because it helps guarantee that photons will have many (isotropic)
scattering collisions reducing the flux transients ( ∂F

∂t ) and making the photon intensity
weakly dependent on angle (which are the assumptions that are required for diffusion
theory).

We will now show that previous definitions of the diffusion criterion are more restric-
tive than necessary to produce an accurate result. In fact, we will show that by relaxing
the diffusion criterion to include less opaque groups, it is possible to reduce the effects
of up-scattering teleportation error. To understand the justification for relaxing the dif-
fusion criterion, consider an ideal example of diffusion theory. This example consists of
a semi-infinite slab of purely isotropic scattering material heated by a constant surface
source. In this example, we would expect the photon intensity to be weakly dependent
on angle and the derivative of the flux as a function of time to be small making it an ideal
candidate for diffusion theory. However, if we continuously refine the spatial mesh that
defines the slab we will eventually violate the minimum optical thickness requirement
defined by Eq. 31 regardless of the validity of diffusion theory for the problem. It turns
out that this limit is too restrictive because it is too local in scope, it only considers a
single zone’s properties. As it turns out the validity of diffusion theory has more to do
with the global scope as opposed to the local scope of the problem. In contrary to this it
is easy to see that relaxing the diffusion criterion too much can quickly cause problems
in heterogeneous systems. Consider a very thin opaque material placed in between to
optically thin materials. Even if the thin opaque material is highly scattering, it is likely
not thick enough to produce enough scattering events to make the diffusion assump-
tions valid in the material. We therefore seek to relax the diffusion criterion in a way
that captures more of the moderately opaque groups while maintaining a reasonable
amount of local scope to prevent us from applying diffusion when it is not accurate.

4.1. Modifying the diffusion-transport interface condition
In order to relax the diffusion criteria to include less opaque groups, it is necessary to

modify the diffusion transport interface condition such that it ensures the probabilities
will be bounded regardless of the zone’s frequency-integrated optical thickness. To
accomplish this, we modify the previously defined extrapolation distance when a zone
is less than 4 mean free paths thick.

λ

{
0.7104 if κ̃r∆x > 4
λ̃ else

The modified extrapolation distance λ̃ is determined using Eq. 31 and is a function of
the optical thickness τ̃ = κ̃r∆x and the scattering ration ω̃ =

κ̃r− f κ̃p

κ̃r

λ̃ =
5
3

+
1

3
2 (1 − ω̃)τ̃ +

√
3(1 − ω̃) + 9

4 (1 − ω̃)2τ̃2
−

1√
3(1 − ω̃)
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The extrapolation distance λ is an empirical estimation of the location that the scalar
intensity will diminish to zero assuming that it was linearly extrapolated away from the
interface. This modified extrapolation distance is increased as the interface condition is
applied to less optically thick zones. We assume that any additional errors associated
with this modified interface condition are going to be less significant than the errors that
occur from up-scattering teleportation error.

4.2. The new diffusion criterion
The new diffusion criterion, which we will refer to as “over-lumping”, is constructed

under the assumption that if a zone is reasonably opaque and the scattering ratio is
high, then any group that significantly contributes to the effective scattering should
be isotropic and Planckian. This new diffusion criterion is formed in two parts, one
consisting of frequency integrated quantities, and the other of frequency-dependent
quantities. The over-lumping diffusion criterion is easiest to express in pseudo code.

γ(νg,∆xz)



if
(κr− fκp

κr
< 0.9

)
return γ = 0

else if (κr∆x < 1.0)
return γ = 0

else if (κg∆x >= 4)
return γ = 1

else if (κg∆x >= 0.01 && ξg >= 1 × 10−4 )
return γ = 1

else
return γ = 0

The frequency integrated criteria are used such that diffusion is only applied in relatively
opaque (κr∆x < 1.0) highly scattering (κr− fκp

κr
< 0.9) zones. The frequency dependent

criteria ensure that all opaque groups (κg∆x >= 4) in these zones are included and all
moderately opaque groups (κg∆x >= 0.01) that significantly contribute to the effective
scattering frequency spectrum (ξg >= 1 × 10−4). We call this an over-lumping diffusion
criterion because we are include the moderately opaque groups that were previously
treated as transport groups in the previous frequency-integrated (or “lumped”) hybrid
methods defined by the diffusion criteria defined in Section 3.

4.3. A demonstration of up-scatter source tilting and the over-lumping diffusion criterion
Figure 8 shows the temperature profile for the heated iron test case in Section 3.3 at

the same spatial refinements using the new over-lumping criteria. Comparing Figures 7
and 8 shows that the new over-lumping approach significantly reduces the teleportation
error, particularly in the 100 zone refinement which is no longer less accurate than IMC.

Figures 9 and 10 show the relative error of the material temperature as compared to
the SN solution at a 1000 zone refinement. Comparing these figures shows that over-
lumping significantly improves the HIMCD results. This is particularly true for the 100
zone refinement which was being dominated by the up-scattering teleportation error in
HIMCD with the old lumping diffusion criteria.
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Figure 8: Using the over-lumping diffusion criteria, along with source tilting, significantly improves the results
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Figure 9: The relative error of the HIMCD method using up-scattering source tilting and over-lumping at the
three different spatial refinements as compared to the 1000 zone SN .
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Figure 10: The relative error of the HIMCD method using up-scattering source tilting and the lumping diffusion
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Table 1: Simulation run times, maximum relative error, and figure of merit for the various spatial refinements
of the stationary heated iron test case.

HIMCD over-lumping HIMCD lumping IMC
# Zones t [s] εmax η t [s] εmax η t [s] εmax η

10 7 0.091 1.57 12 0.22 0.38 805 0.344 0.004
100 87 0.005 2.30 87 0.15 0.08 804 0.036 0.03
1000 1105 0.014 0.06 1221 0.011 0.07 910 0.018 0.06

Table 1 lists the total simulation time t, the maximum relative error εmax, and the
figure of merit η = (tεmax)−1 for each of the simulations. All simulations where run using
domain replication on 128 processors. The HIMCD algorithm takes slightly longer than
IMC for the 1000 zone refinement because it performs extra work setting up the diffusion
values which are not being used very often for the optically thin zones. The differences
in run time have little effect on the overall figure of merit for the 1000 zone simulation.

4.4. A radiation hydrodynamics example
To show the flexibility of the over-lumping diffusion criteria we will compare it to

the standard lumping approach for a frequency-dependent radiation hydrodynamic
simulation. The frequency-integrated HIMCD method presented here can easily be
applied to the radiation hydrodynamic HIMCD originally presented for frequency-
independent simulations by Cleveland et al.[7]. We will compare over-lumping to the
standard lumping diffusion criteria using a simple ablation test case [7]. This test case
consists of a block of optically thin silicon dioxide next to optically thick iron. A black
body emission source is placed on the exterior face of the silicon dioxide. The radiation
from the source streams through the silicon dioxide and deposits its energy into the
optically thick iron. This causes the iron to rapidly expand creating a shock in both the
iron and silicon.

The optically thick material, iron, spans the domain 0 ≤ x ≤ 5 [cm] and the optically
thin material, silicon dioxide, spans the remainder of the spatial domain 5 ≤ x ≤ 50
[cm]. The iron is separated into 150 mesh zones which geometrically increase in size
from the material interface at x = 5 [cm] to x = 0 [cm]. The silicon dioxide is composed
of 50 spatial zones that geometrically increase in size from the material interface at x = 5
[cm] to x = 50 [cm]. The material starts at an initial temperature of T = 0.1 [keV] and is
heated during the simulation by a Ts = 1.0 [keV] isotropic radiation source incident on
the right side of the thin material at x = 50 [cm]. The relationship between the change
in material energy to the change in material temperature (Eq. 3) is evaluated using the
Livermore equation of state database for iron and silicon dioxide. The iron is given an
initial density of ρFe = 7.86 [g/cc] and the silicon dioxide is given an initial density of
ρSiO2 = 2.65 × 10−4 [g/cc]. The simulation was evaluated from the initial time t = 0 to a
final time t = 1×10−7[sec] using a maximum time step size of 1×10−10 [sec]. Each method
used 1 × 107 Monte Carlo particles per time step. We applied a frequency stencil of 30
logarithmically spaced frequency groups (1e−3 < ν < 100.0) [keV] for every simulation.

Figures 11, 12, 13, and 14 show the velocity (u), density (ρ), material temperature
(Tm), and radiation temperature (Tr) profiles as evaluated by SN and HIMCD using
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Figure 11: The velocity profile for HIMCD using lumping and over-lumping compared to the SN solution.

lumping and over-lumping. The SN solution is used as the reference result to generate
relative errors comparing the two methods.

Figures 15, 16, 17, and 18 show the absolute error of the velocity1, the relative error
of the density, material temperature, and radiation temperature for each of the HIMCD
simulations as compared to the SN reference solution. These figures show that the
over-lumped HIMCD method agrees better with the SN solution in the optically thick
material, while the standard lumped HIMCD method agrees better in the optically thin
material.

Table 2 lists the run times for each of the simulations, the maximum relative error,
and the figure of merit. The most substantial difference is that over-lumping reduces the
maximum relative error in the material density, as compared to the SN reference solution,
by nearly an order of magnitude. The other quantities appear to be less sensitive to the
over-lumping as compared to the standard lumping approach.

5. Conclusions

In this work we have shown that frequency-dependent HIMCD, and similarly Hybrid
DDMC, suffer from a new kind of source teleportation error. This new teleportation error

1Absolute error is used for the velocity values, rather than relative error, because they are near zero.
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Figure 12: The density profile for HIMCD using lumping and over-lumping compared to the SN solution.

Table 2: Simulation run times, maximum relative error, and figure of merit for the simple frequency dependent
ablation test case.

HIMCD over-lumping HIMCD lumping
Variable τ [s] εmax η τ [s] εmax η

ρ

2020

0.08 0.006

2328

0.32 0.001
u 0.051 0.010 0.031 0.014
Tr 0.04 0.012 0.16 0.003
Tm 0.15 0.003 0.15 0.003
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Figure 13: The material temperature profile for HIMCD using lumping and over-lumping compared to the SN
solution.
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Figure 14: The radiation temperature profile for HIMCD using lumping and over-lumping compared to the
SN solution.
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Figure 15: The absolute error of the velocity profile for HIMCD using lumping and over-lumping compared
to the SN solution.
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Figure 16: The relative error of the density profile for HIMCD using lumping and over-lumping compared to
the SN solution.
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Figure 17: The relative error of the material temperature profile for HIMCD using lumping and over-lumping
compared to the SN solution.

30



0 10 20 30 40 50
x

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 E

rr
o
r 

- 
T
r

Iron SiO2

HIMCD lumping
HIMCD over-lumping

Figure 18: The relative error of the radiation temperature profile for HIMCD using lumping and over-lumping
compared to the SN solution.
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arises from using poor spatial shapes to represent the discrete events when particles
scatter from the diffusion to the transport domain.

We found that source tilting significantly reduces the up-scattering teleportation error
in moderately opaque problems. This is because source tilting better represents the true
spatial distribution of the up-scattering events as compared to a piecewise constant
distribution. We found that our source tilting scheme was not enough to completely
prevent a significant amount of teleportation error from accumulating.

Finally, we show that up-scattering teleportation error can be significantly reduced,
even in very optically thick materials, by lumping the previously excluded moder-
ately opaque opacity groups into the diffusion domain. This over-lumping was accom-
plished by modifying the diffusion criterion to be based on both frequency-integrated
and frequency-dependent quantities.

A consequence of including the moderately opaque groups was that we had to
modify the diffusion-transport interface condition to accommodate zones of arbitrary
optical thicknesses. The errors associated with this modified interface conditions were
shown to be less impactful then the improvements in the reduction of teleportation error.

The frequency-integrated over-lumped HIMCD method, which uses source tilting
to sample the spatial locations of up-scattering, was significantly more accurate than
the standard frequency-integrated HIMCD method previously presented. In fact, we
showed that the HIMCD method is not just faster than IMC, but is also more accurate in
very opaque materials. The new over-lumping and source tilting schemes eliminate the
majority of the emission and up-scattering teleportation error regardless of the overall
optical density of the problem.
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